Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: covidwho-20233460

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. However, only a portion of patients respond to such treatments. Therefore, it remains a prevailing clinical need to identify factors associated with acquired resistance or lack of response to ICIs. We hypothesized that the immunosuppressive CD71+ erythroid cells (CECs) within the tumor and/or distant 'out-of-field' may impair antitumor response. METHODS: We studied 38 patients with cancer through a phase II clinical trial investigating the effects of oral valproate combined with avelumab (anti-programmed death-ligand 1 (PD-L1)) in virus-associated solid tumors (VASTs). We quantified the frequency/functionality of CECs in blood and biopsies of patients. Also, we established an animal model of melanoma (B16-F10) to investigate the possible effects of erythropoietin (EPO) treatment on anti-PD-L1 therapy. RESULTS: We found a substantial expansion of CECs in the blood of patients with VAST compared with healthy controls. We noted that the frequency of CECs in circulation was significantly higher at the baseline and throughout the study in non-responders versus responders to PD-L1 therapy. Moreover, we observed that CECs in a dose-dependent manner suppress effector functions of autologous T cells in vitro. The subpopulation of CD45+CECs appears to have a more robust immunosuppressive property compared with their CD45- counterparts. This was illustrated by a stronger expression of reactive oxygen species, PD-L1/PD-L2, and V-domain Ig suppressor of T-cell activation in this subpopulation. Lastly, we found a higher frequency of CECs in the blood circulation at the later cancer stage and their abundance was associated with anemia, and a poor response to immunotherapy. Finally, we report the expansion of CECs in the spleen and tumor microenvironment of mice with melanoma. We found that although CECs in tumor-bearing mice secret artemin, this was not the case for VAST-derived CECs in humans. Notably, our results imply that EPO, a frequently used drug for anemia treatment in patients with cancer, may promote the generation of CECs and subsequently abrogates the therapeutic effects of ICIs (eg, anti-PD-L1). CONCLUSIONS: Our results demonstrate that anemia by the expansion of CECs may enhance cancer progression. Notably, measuring the frequency of CECs may serve as a valuable biomarker to predict immunotherapy outcomes.


Subject(s)
Melanoma , T-Lymphocytes , Humans , Animals , Mice , T-Lymphocytes/pathology , Immunotherapy/methods , Erythroid Cells/pathology , Neoplasm Staging , Tumor Microenvironment
2.
J Immunol ; 207(4): 1099-1111, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1328168

ABSTRACT

Understanding the function of SARS-CoV-2 Ag-specific T cells is crucial for the monitoring of antiviral immunity and vaccine design. Currently, both impaired and robust T cell immunity is described in COVID-19 patients. In this study, we explored and compared the effector functions of SARS-CoV-2-reactive T cells expressing coinhibitory receptors and examine the immunogenicity of SARS-CoV-2 S, M, and N peptide pools in regard to specific effector T cell responses, Th1/Th2/Th17, in COVID-19 patients. Analyzing a cohort of 108 COVID-19 patients with mild, moderate, and severe disease, we observed that coinhibitory receptors (e.g., PD-1, CTLA-4, TIM-3, VISTA, CD39, CD160, 2B4, TIGIT, Gal-9, and NKG2A) were upregulated on both CD4+ and CD8+ T cells. Importantly, the expression of coinhibitory receptors on T cells recognizing SARS-CoV-2 peptide pools (M/N/S) was associated with increased frequencies of cytokine-producing T cells. Thus, our data refute the concept of pathological T cell exhaustion in COVID-19 patients. Despite interindividual variations in the T cell response to viral peptide pools, a Th2 phenotype was associated with asymptomatic and milder disease, whereas a robust Th17 was associated with severe disease, which may potentiate the hyperinflammatory response in patients admitted to the Intensive Care Unit. Our data demonstrate that T cells may either play a protective or detrimental role in COVID-19 patients. This finding could have important implications for immune correlates of protection, diagnostic, and prophylaxis with respect to COVID-19 management.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Adult , Aged , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Viral Matrix Proteins/immunology
3.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216782

ABSTRACT

The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor ß (TGF-ß) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.IMPORTANCE The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. We observed substantial elevation of the plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls. Gal-9 is an abundant protein in many immune and nonimmune cells. We found that Gal-9 detection assay can differentiate SARS-CoV-2-infected from noninfected individuals with a specificity/sensitivity of 95%. Importantly, we found a positive correlation of the plasma Gal-9 with a wide range of proinflammatory biomarkers in COVID-19 patients. In agreement, we found enhanced expression and production of such proinflammatory molecules by immune cells of COVID-19 patients once treated with Gal-9 in vitro Our results propose Gal-9 as an important contributing factor in cytokine release syndrome; therefore, Gal-9 inhibition may serve as a beneficial therapeutic approach by suppressing the hyperimmune activation in COVID-19 patients.


Subject(s)
Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/physiopathology , Galectins/blood , Sex Factors , Adult , Age Factors , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged , ROC Curve , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL